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NoTtaTIiON

Subscripts M and BL refer to Maxwell and to Barlow-Lamb liquids respectively.

Superscript * denotes complex quantity.

Superscripts * and ” refer to real and imaginary parts respectively of a complex
quantity, ¢.g. G*(iw) = G'(w) +iG"(w).

A* = A" —iA4"

b
D
S

ﬂ;ﬂl’ ﬂz
Y

complex mechanical admittance (admittance = reciprocal of impedance) in
oscillatory shear

half width of Hertzian conjunction region between two disks

shear rate

coefficient of frictional traction

maximum coefficient of frictional traction

frictional traction

complex modulus in oscillatory shear

limiting shear modulus in oscillatory shear at very high frequencies

minimum thickness of lubricant film, assumed to be approximately constant
in Hertzian conjunction region

operator denoting out-of-phase component in oscillatory phenomena

complex compliance (= reciprocal of modulus) in oscillatory shear

thermal conductivity of lubricant

arbitrary shift constant in relation between behaviour of viscoelastic liquid in
oscillatory and in continuous shear, » = KD

inverse Laplace transform

normal load on disks

pressure

mean Hertzian pressure in conjunction between two disks

present time

mean time of exposure of liquid to shear field

absolute temperature

past time

peripheral velocities of disks relative to their conjunction
mean rolling velocity

complex mechanical impedance in oscillatory shear
pressure coefficient of viscosity
constants in relation between viscosity and temperature

shear strain
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ELASTOHYDRODYNAMIC LUBRICATION

A =9,D|G,,  dimensionless shear rate

§=Gytly, dimensionless time

8y 8 Am

& Geota/7,

b o

7 viscosity

Mo true viscosity, viscosity at zero rolling speed

N apparent viscosity

Nw viscosity at temperature 0y of walls bounding film of lubricant
n* =9 —iy”  complex dynamic viscosity in oscillatory shear

7 temperature

0. mean temperature in median plane of film of lubricant
Ow temperature of boundaries of film of lubricant

A = 1y/G o relaxation time

£ =1[n,D dimensionless shear stress

3 oy

P density of liquid

T shear stress

Too equilibrium value of shear stress

T mean shear stress over conjunction region

¢* = ¢' +ig"

Xo

SERSTISS

Q2= "70“)/000

The formation of the film of lubricant necessary for the correct functioning of heavily loaded
bearing surfaces, such as those of gears, cams and tappets, etc., depends on the mechanism known
as elastohydrodynamic lubrication. The loaded surfaces may fail by scuffing or scoring and this
failure is difficult to predict or to understand. T'wo elements essential to an understanding of this

fluidity (reciprocal of viscosity) in oscillatory shear
thermal diffusivity of lubricant

7w B (UL — Uy)? (8K

relaxation function

angular frequency in oscillatory shear
dimensionless frequency in oscillatory shear

Much experimental information on frictional traction in elastohydrodynamic lubrication has been
published, but there is no adequate theory to explain the many puzzling features of the results. In this
paper, some of the friction results are interpreted in terms of a recently published model of a viscoelastic
liquid. This model refers to behaviour in oscillatory shear, and in this work the implications for the
behaviour in continuous shear have been examined.

The experimental curves of frictional traction against sliding speed have been analysed into three
regions; the linear region, the nonlinear (ascending) region, and the thermal (descending) region.

In the linear region there is a necessary and close connexion between the friction and the behaviour in
oscillatory shear, and many of the experimental features observed have been explained in terms of the
new viscoelastic model, which is considerably superior to the more conventional Maxwell model. Some
of the experimental results are still unexplained.

In the nonlinear (ascending) region, the relation between results in oscillatory shear and those in
continuous shear is far less clear-cut, but it is possible to show some measure of agreement between the
two fields.

In the thermal (descending) region, some of the precision is regained, and an empirical relation proposed
in the analysis of the nonlinear (ascending) region is found to give a good quantitative agreement with
published results.

INTRODUCTION

1-2
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4 A. DYSON

form of failure are the values of the minimum film thickness and the coefficient of sliding friction,
and these quantities are also of great practical interest in themselves.

An adequate theory for the minimum film thickness is available (Dowson & Higginson 1961;
Dowson, Higginson & Whittaker 1962) and has been extensively tested against experiment. Good
agreement was obtained over a wide range of lubricants and of experimental conditions (Dyson,
Naylor & Wilson 1965—6) but some discrepancies were noted. These discrepancies have been
explained in principle, and suitable modifications to the basic theory have resulted in reasonable
agreement with experiment (Dyson & Wilson 19656, 1969).

The position as regards frictional traction is much less favourable, and there is no adequate
quantitative theory that will predict or explain the experimental results. In the theory for the
film thickness, it was assumed that the lubricant was an isothermal Newtonian liquid, with a vis-
cosity increasing exponentially with pressure. A few elementary calculations show that thermal
effects in the lubricant film must be very important in the range of sliding speeds of practical
interest, but both Smith (1960, 1962) and Crook (1963) pointed out that thermal effects in a
Newtonian lubricant were insufficient to explain their experimental results. Crook (1963)
suggested that non-Newtonian behaviour was involved, while Smith (1960, 1962) went so far as
to postulate a limiting shear strength at which the fluid film failed in a manner similar to that of
a plastic solid.

The main difficulty encountered in any theoretical treatment is that of obtaining information
from other fields as to the behaviour to be expected from a lubricant under the conditions of
elastohydrodynamic lubrication. These conditions are severe and unusual: shear rates range
up to 10757, temperatures up to 670 K (400 °C), pressures up to several GN m~—2 (¢ca. 101°dyn
cm~2; 1450001bfin—2%), and the duration of exposure to these conditions is of the order of 1 to
100 ps. It is impossible to reproduce this situation in any controlled rheological experiment, and
indeed it seems impossible to reproduce it at all outside an elastohydrodynamic contact.

In an attempt to circumvent this difficulty, it seems reasonable to attribute the non-New-
tonian behaviour of lubricants to viscoelasticity, and to make use of the analogy between the
behaviour of a viscoelastic liquid in oscillatory and in continuous shear. An attempt to interpret
the results of Smith and of Crook on these lines has already been made (Dyson 1965), information
about the behaviour of mineral oils in oscillatory shear being obtained from the results of Barlow
& Lamb (1959). There were some unsatisfactory features in this treatment, including unex-
plained experimental effects, the principal such effect being the variation with rolling speed of
the effective viscosity at low sliding speeds, first reported by Crook (1963).

Further very important information about the frictional traction in elastohydrodynamic
lubrication has recently been published (Johnson & Cameron 1967-8; Plint 1967-8), and in
the meantime a notable advance in an understanding of the viscoelastic properties of ordinary
liquids has been made by Barlow, Lamb and co-workers who have proposed a new model of a
viscoelastic liquid (Barlow, Lamb, Matheson, Padmini & Richter 1967; Barlow, Erginsav &
Lamb 1967). The time therefore seems opportune for a re-examination of the relation between
frictional traction in elastohydrodynamic lubrication and the viscoelastic properties of the
lubricant.

This paper will deal first with the main features of the experimental results concerning frictional
traction. Then the new model of the viscoelastic behaviour of ordinary liquids, due to Barlow,
Lamb and co-workers, will be explained, and the relation between these two fields of work will
be explored.
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ELASTOHYDRODYNAMIC LUBRICATION 5

OUTLINE OF EXPERIMENTAL RESULTS IN FRIGTIONAL TRACTION
The experimental situation

Most of the useful experimental work in frictional traction in elastohydrodynamic lubrication
has been done with disk machines. Two disks, usually of hardened steel, are loaded together and
rotated in the presence of a lubricant. The situation is illustrated in figure 1, where the surfaces
of the disks have velocities U; and U, relative to their conjunction. The disks deform elastically
to give a conjunction region A,B; A,B,, of width 2b approximately equal to that in the corre-
sponding Hertzian case of dry contact. The surfaces are approximately parallel in this region;
the approximately constant film thickness, %,, may be obtained from isothermal theory (Dowson
& Higginson 1961; Dowson, Higginson & Whittaker 1962) in most cases. It should be noted that
hy ~ 0.1 —1pm and b ~ 0.1 mm, the width A, B; = A,B, of the conjunction being much greater

than the separation A; A, = B, B,.
line of centres

1
|
91 ;<—-—b—-——>.<-—b-——>:
N
|
|
1

f 1
ko ‘

{ | '.
/ e Bz\
1
o, |

Ficure 1. The conjunction region in a disk machine.

In a typical experiment, the temperatures ¢, and 0, of the incoming surfaces and the mean
rolling velocity U = (U, +U,) are kept constant. This means that the film thickness 4, in the
conjunction is also constant. The frictional traction, F, is measured as a function of the sliding
speed (U; — U,). If all the frictional traction is assumed to arise from shearing of the lubricant in the
conjunction, then since the film thickness is constant this relation between frictional traction and
sliding speed is of the same form as the relation between the mean shear stress and the mean shear
rate in the conjunction. The features of individual curves of traction against sliding speed will be
discussed first and then the changes in these main features as the experimental conditions are

varied.
Features of curves of traction against sliding speed

Apart from a very small rolling component of friction, the typical curve of traction against
sliding speed, illustrated in figure 2, may be divided into three main regions.

linear nonlinear
region region thermal region

frictional traction —

|
[
|
|
|
|
|
|
|

sliding speed (U, — U,)
F1GURE 2. Variation of frictional traction with sliding speed.
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6 A. DYSON

At low sliding speeds the relation is linear. In view of the close connexion between the experi-
mental curve and the shear stress-shear rate relation, mentioned previously, this may be called
the quasi-Newtonian region, with a constant viscosity defined by the slope.

The linear portion of the curve in figure 2 is succeeded by a nonlinear region PQ rising to a
maximum at Q. As the sliding speed increases, variations of temperature within the oil film
became more and more important. The maximum rise of temperature in the oil film, compared
with the temperatures of the bounding surfaces, may be calculated very simply (Archard 1958/9).
Such calculations applied to published experimental results show that this rise in temperature
is usually between 5 and 10K at the friction maximum. Thermal effects are therefore relatively
unimportant below the maximum, in the region PQ , but they are quite important, and may even
be dominant, in the region QR beyond the maximum. This region will therefore be called the
thermal region.

Variation with conditions of features of the friction curves

The three prominent features that characterize individual curves of frictional traction against
sliding speed are the slope of the initial linear portion, the maximum value of the coefficient
of friction, and the general agreement between the shapes of the curves in the thermal region.
The variation with experimental conditions of each of these three features will now be discussed.

The slope of the linear portion defines a viscosity, which might be expected to remain constant
at constant load and temperature. Crook (1963) pointed out that this viscosity decreased with
increasing rolling speed, and proposed an explanation in terms of a Maxwell viscoelastic liquid.
But he had to assume values of the shear modulus, G, as low as 5 MN m~2 (5 x 107 dyncm~2),
whereas the experiments of Barlow & Lamb (1959) in oscillatory shear gave values approaching
1GNm=2 (101°dyn cm~2). This value may require modification in the light of subsequent
work in which the modulus was found to decrease with increasing temperature (Barlow, Erginsav
& Lamb 1967) and to increase with increasing pressure (Pursley 1968), but the value could
scarcely be put at less than 100 MN m—2 (10° dyn cm~2). Furthermore, it has been shown (Dyson

\,
X
X,

0.06175-8 %‘\
R

=
—~ =) x X
T AT
g p,—u\hﬂ\ - \,; e
bg 'f MO0
§ 003 — T
5]
§ F—1t =+
0(I) I} 30 1 6|0 in S_l
0 0.5 1 15 m st

sliding speed (U; — U,)

F1cure 3. Variation of traction with sliding speed at various contact pressures (from Johnson & Cameron 1967-8) :
maximum Hertz pressure, GN m—2 (1031bfin=2): 4, 0.43 (62); O, 0.60 (87); 1, 0.76 (110); A, 1.01 (147);
O, 1.21 (176); @, 1.38 (200); x , 1.55 (224); V/, 1.67 (243).
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ELASTOHYDRODYNAMIC LUBRICATION 7

1965) that Crook’s explanation in terms of the Maxwell model was inconsistent with the observed
extent of the linear portion of the graph of traction against sliding speed. A tentative explanation
in terms of the Lamb—Barlow model of a viscoelastic liquid will be advanced later.

The effect of the normal load N on the curves of traction against sliding speed is shown in
figure 3, reproduced from Johnson & Cameron (1967-8). Particular attention is directed to the
variation with pressure of the maximum value of the coefficient of frictional traction, F/N.
At low pressure this increases sharply with pressure and it is shown in appendix A that this is
typical of the behaviour of a Newtonian lubricant which is dominated by thermal effects. The
treatment is very much simplified, but a qualitatively similar conclusion is unavoidable. At high
pressures, however, the maximum coefficient of friction is almost independent of pressure, and
this is evidence that something other than thermal effects in a Newtonian lubricant is required
to explain the experimental observations.

The third important feature of the experimental results is that the curves of coefficient of
friction against sliding speed tend towards a limiting ‘ceiling’ curve for sufficiently high pres-
sures and for sufficiently low temperatures and rolling speeds. This is shown in figure 4, also
reproduced from Johnson & Cameron (1967-8); the common limiting curve suggested by figure
4 is also shown in figure 3. Plint (1967-8) reports a similar finding, although his limiting curve is
different from that of Johnson & Cameron.

traction coefficient F/N

008
303K 323K 363K B
(30°C)  (50°C)  (90°C) OU/mst  UTfins?
o PY ® 0.2 7.8
O ™ o 0.41 16
. A A 0 0.86 34
Vo % ® 1.2 47
004{# Vormiy + ® 1.9 76
v v 3.9 153
O ¢ 6.6 260
g e
L 1 L ]
0 05 1.0 15 ms~!

sliding speed (U; — U,)
Ficurk 4. Influence of rolling speed and disk temperature on the traction coefficient
(from Johnson & Cameron 1967-8).

In the following sections of this paper, an attempt will be made to interpret these features of
the experimental results in terms of the viscoelastic properties of the lubricant. The viscoelastic
properties of the lubricants used in the friction experiments have not been investigated experi-
mentally, but use will be made of a general model of a real viscoelastic liquid, to which it may be
assumed that most lubricants will approximate. The three regions of a typical traction-sliding
speed curve, the linear, the nonlinear (ascending), and the thermal (descending ) regions will be
considered in turn.
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8 A. DYSON

The properties of liquids in oscillatory shear at small amplitudes must first be discussed, and
this will lead to a consideration of various models which have been proposed to explain this
behaviour.

PROPERTIES OF LIQUIDS IN OSCILLATORY SHEAR AT SMALL
AMPLITUDES

Oscillatory shear of a viscoelastic liquid

The simplest way of describing the properties of a liquid in oscillatory shear at small ampli-
tudesis by its shear modulus, G*, defined as the instantaneous ratio between shear stress and shear
strain. In general, the shear stress will have components in phase and out of phase with the shear
strain, and G* is therefore a complex quantity.

G*(iv) = G'(w) +iG"(w), (1)
where G’ is the real part and G” the imaginary part of the modulus. The behaviour in small-
amplitude oscillatory shear at any given temperature and pressure is described completely by
the variation with frequency of G’ and of G".

Alternative descriptions of this behaviour may be given in terms of other complex quantities,
e.g. the quantity determined experimentally is the shear mechanical impedance, Z*, defined
as the ratio of shear stress to velocity of displacement. The impedance is also a complex quantity,
with real and imaginary components:

Z* = 7' +iZ".

The relation between modulus and impedance is obtained from the standard theory for the

propagation of a shear wave through a medium (Barlow & Lamb 1959):

(Z%)2 = pG, (2)
where p is the density of the liquid.
The reciprocals of the above quantities, the compliance, J*, and the admittance, 4*, are
also important:
J*¥ =J —iJ" = (G*), (3)
A* = A'—i4" = (Z*). (4)
Equations (2) to (4) give (4*)2 = J*/p.
Other alternative ways of specifying the properties are in terms of the complex viscosity #*
or the complex fluidity ¢*:
7* =9 —iy" = G*[io,
B = ¢/ +ig" = (1)1 = 0J*,

where o is the angular frequency.

Models of viscoelastic liquids

As the time scale of an experiment is decreased, the viscous deformation of the liquid is de-
creased in proportion, and it is found that the experimental deformation is greater than the
theoretical viscous deformation ; for very short times, the behaviour is characteristic more of an
elastic solid than of a viscous liquid. Itis then postulated that there is an elastic deformation which
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ELASTOHYDRODYNAMIC LUBRICATION 9

isin some way added to the viscous deformation to give a liquid with viscoelastic properties. Thus,
there is required some way in which a ‘softness’ property, compliance, admittance, or fluidity,
of a viscoelastic fluid may be synthesized from the corresponding properties of a Newtonian fluid
and of a Hookean solid.

The conventional way in which this is done is to add the compliances or fluidities of the two
elements to form a Maxwell viscoelastic body. Unfortunately, real liquids in general do not
behave as Maxwell bodies, and it is usual to explain their behaviour by means of a combination or
distribution of Maxwell elements.

This synthesis of a Maxwell element from the compliances of an elastic solid and of a viscous
liquid is quite arbitrary, and there is no reason why a viscoelastic element should not be con-
structed by the addition of the mechanical admittances of the elastic and of the viscous compon-
ents. Barlow, Lamb et al. (1967) pointed out that a large number of chemically defined liquids
did in fact behave in this way. They suggested that the factor controlling the variation of viscosity
with temperature was of fundamental importance, and that for a liquid to behave as a Maxwell
fluid, the viscosity should be limited by the energy of activation, and should show an Arrhenius
dependence on temperature:

Iny = oy +4/T,
where 7 is the absolute temperature. In practice most liquids would behave like this only near
the boiling point. On the other hand, it was suggested that liquids behaving according to the Bar-
low-Lamb model would have a viscosity limited by free volume and varying with temperature
according to the relation:

I
T-T,

Iny = o, +

Most practical lubricants would be expected to fulfil these requirements. The Barlow—Lamb
model has been shown to fit the experimental results for a wide range of pure chemically defined
liquids, including synthetic lubricants such as di(2-ethylhexyl)phthalate. Rather curious devia-
tions have been observed for some mixtures, but there is evidence that the model is obeyed
exactly or approximately by mineral oils (Hutton 1968), and in the following treatment it will
be assumed that the lubricant behaves as a Barlow—Lamb viscoelastic liquid.

Table 1 gives a summary of the various properties of elastic, viscous and viscoelastic models in
oscillatory shear at small amplitudes. The relations defining the viscoelastic models are dis-
tinguished by thick boundaries; the other relations follow from these definitions by the rather
cumbersome procedure of separating real and imaginary parts in equations such as (1) to (4).

So far the discussion has been concerned with the behaviour of viscoelastic liquids in oscilla-
tory shear, but in elastohydrodynamic lubrication the interest is in their behaviour in continuous
shear. At low values of the shear rate D, such that

A= WOD/GOO < l,

the behaviour of a viscoelastic liquid in continuous shear may be determined exactly if its be-
haviour in oscillatory shear is known. Thus the problem of the apparent viscosity at low sliding
speeds should be amenable to exact treatment, but the situation is more difficult at higher shear
rates such that A is not small compared with unity. There is then only a rather loose and im-
precise analogy between the behaviour of a viscoelastic liquid in oscillatory and in continuous
shear, and a corresponding lack of precision must be expected in predictions of the frictional
traction. Some of this precision is regained in the thermal region.

. Vol, 266. A.
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ELASTOHYDRODYNAMIC LUBRICATION 11
THE LINEAR REGION OF THE TRACTION-SLIDING SPEED CURVE

Non-steady response of a Maxwell liquid

In an elastohydrodynamic contact such as that of figure 1, the pressure in the film of lubricant
gradually builds up from atmospheric, at positions in the inlet zone remote from the conjunction,
to something approaching the Hertzian pressure in the conjunction itself. The viscosity varies
almost exponentially with pressure, and therefore increases very rapidly as a particle of lubricant
enters the Hertzian contact zone.

As an approximation, it will be assumed that lubricant enters the boundary A, A, between the
inlet and the Hertzian zones in figure 1 with essentially zero viscosity and zero shear stress. As the
lubricant crosses the boundary A; A,, its viscosity will be considered to increase suddenly to a
high value 7,, and to remain at this value until the lubricant leaves the Hertzian zone at B, B,,
when the viscosity returns to zero. The shear rate

D = (U~ ky
is assumed to be constant and small, such that
A = 'DAIVI < 1,

where Ay = 79,/G, is the relaxation time of the Maxwell liquid. The equilibrium value of the shear
stress 7o, 18

T = ﬂOD ’
but there is a delay in building up this shear stress from its initial value of zero. The build-up of
the stress is governed by the constitutive equation of the Maxwell liquid:

1 dr

where ¢is time. The differential coefficients are unambiguous provided A is small compared with
unity. The solution to equation (5) if 7y = 0 at ¢ = 0 is

Em = Tu/NgD = 1 —exp (—Cu),
where {y = t/Ay.
The experimental observation is of the mean shear stress 7y; given by

il

- T fm — —&ar

= 08 = o [ S dg = 1- 2 ), (6)
where {y; = /Ay and ¢, = 2b/Uis the total time of exposure of the lubricant to the conditions
of shear.

Equation (6) has been used both by Crook (1963) and by Plint (1967-8) to explain the
variation with rolling speed of the apparent viscosity at low sliding speeds. Plint’s values of the
shear modulus

GOOM = 770/ App
are of the order of 1 GN m~2 (10! dyn cm~2) and are thus consistent with estimates from experi-
ments in oscillatory shear (Barlow & Lamb 1959; Hutton 1968), but Crook’s values are between
0.14 and 19 MN m~2 (1.4 x 10° and 1.9 x 10° dyn cm~2) and the lower limit is far too low to be
acceptable. It has been shown (Dyson 1965) that these lower values are inconsistent with the
observed extent of the linear range of the variation of frictional traction with sliding speed.

2-2
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12 A. DYSON

Non-steady response of a Barlow—Lamb liquid

The relation between the behaviour of a viscoelastic liquid in oscillatory shear and that in
continuous shear at low shear rates has been discussed by many authors, e.g. Gross (1953). The
only important physical assumption necessary for the development of the theory is that the liquid
obeys the Boltzmann principle of linear superposition. A statement of this principle appropriate
to the present case is that the shear stress, 7(¢), at a given time, f, may be obtained by a linear
summation of the fading memories of the strains, y(x), at previous times u:

£) = f t_mdz(u”) F(t—u) du, (7)

where ¥ is the relaxation function. The linearity requirement restricts the application to small

strains and to small shear rates.
The strain history considered here is given by:

dy(u)/du =0 (u < 0),
dy(u)/du =D (u > 0),
o) = D[ ¥

where v = t—u. In terms of the non-dimensional shear stress, &,

£ p ) SO

and equation (7) becomes

and the observable mean shear stress is

- f f P(v) dode, (8)

Thus the behaviour in continuous shear at low shear rates is known if the relaxation function
3 is known, and this may be determined from the behaviour of the liquid in oscillatory shear. If

v(w) = yoexp (iwu)
7(t) = ft_ wiwyo exp (iww) (¢t —u) du,

and if the variable is again changed to

equation (7) becomes

v =1—u,

an expression for the instantaneous shear modulus is obtained:
G*(iw) = T8 _ o f V) exp (—iwv) do. )
7(8) 0
Gross (1953) gives the inversion of this Fourier transform:
L 2[*C ) _2[*C"(0)
Y(v) = ﬂfo . sin (wv) dw ;J‘o o o8 (wv) do,
where G*(iv) = G'(0) +1G"(w).

These integrals are difficult to evaluate as they stand, but they may be put into a more tractable
form by the use of the relation between the Fourier and the Laplace transforms. Equation (9) may

- [ exp (-0,

where s=e+iw (e—0),

be put in the form
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ELASTOHYDRODYNAMIC LUBRICATION 13

and 7*(s) = G*(s) /s is the complex viscosity. This is a Laplace transform, and the inversion is of
the form F0) = L), (10)

where the symbol L-! denotes the inverse Laplace transform. Equation (10) has been derived
by Phillips (1969). From equation (10), and from a standard result in the theory of Laplace
transforms,

[ [lzisonaar = 12{5 760

the non-dimensional mean shear stress in the situation considered is

- 1 G*(s)
- -1
g_%tlL { s } (1)
It is instructive to recalculate the behaviour of a Maxwell liquid by equation (11). For such
aliquid
AyS
%00 M
GM(S) - Goo].—I-AMS,
and equation (11) gives
s Gy, 1
B Tt {52(1 +/\Ms)}

Al A
s 82 14 Ays

1
= E{_/\M_i'tl"'/\Mexp (=t/Aw)}

L l-ep(=4)
& ’
where {; = #;/Ay, in agreement with equation (6). In appendix B, it is shown that a similar treat-
ment applied to a Barlow-Lamb liquid gives the result

Epr = 1—6(n8)) 2+ 371 + (2 3L7Y) exp & exfe (¢1), (12)
where erfc (x) = 27r—%fwexp (—2) da.

The method of solution of this problem was given by Phillips (1969). In figure 5, the develop-
ment of the mean shear stress is compared for the Maxwell model, equation (6), and for the Bar-
low-Lamb model, equation (12). For both models, £ tends to ¢, at short times and to unity at
long times. The main difference between the two models lies in the range of values of ¢, in the
transition between the behaviour at long times and the behaviour at short times. Thus a change
in £ from 0.8 to 0.2 requires about one decade of &, for the Maxwell liquid and two decades for
the Barlow—Lamb liquid. Also the shear stress is reduced by 10 %, from its equilibrium value at a
non-dimensional time, §;, of 400for a Barlow-Lamb liquid, compared with 10 for a Maxwell
liquid.

This means that viscoelastic effects will be detected at much longer times for a Barlow—Lamb
liquid than for a Maxwell liquid with the same relaxation times. However, this predicted dif-
ference depends critically on the behaviour of the Barlow-Lamb model at long times in continuous
shear, or at low frequencies in oscillatory shear, and some doubt has recently been raised about the
applicability of the model in this region (Hutton & Phillips 1969).
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14 A. DYSON

/
/ /i
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| /

1072 10° 102 10*
§1 = Goo tl/ i

Ficure 5. Comparison of response of different viscoelastic model liquids
in continuous shear at low shear rates.

=]
>

€

Variation of apparent viscosity with rolling speed
For some purposes it is often more convenient to use the apparent viscosity instead of the
shear stress. The apparent viscosity of a liquid in simple shear is defined as
N, =7|D.

The variation with rolling speed of the apparent viscosity of a viscoelastic lubricant in elasto-
hydrodynamic lubrication at low sliding speeds may be obtained from the preceding results.
Suppose that the true viscosity, 7,, is constant as the rolling speed, T, varies. Then the variation
with rolling speed of the apparent viscosity #, depends on the variation of the parameter

_ Gut, 206G,
Mo 70U "

The quantities b and G, may be expected to vary over a comparatively narrow range as

&

temperature load, etc., are varied, and most of the variation in {; will be caused by variations in
7o The following values will be assumed:

b =10"%m (3.94 x 10~3in),
G, =1GNm~2(10dyncm~2).

It will be seen later that the value of G, chosen is consistent with experimental results in
oscillatory shear at high pressures.

Then the variation of the apparent viscosity, 7,, with the mean rolling speed, U, may be ob-
tained for various values of the true viscosity, 7,. The result for a Barlow-Lamb viscoelastic
liquid is given in figure 6.

There will be some experimental lower limit to the rolling speed U; from figure 15 of Johnson
& Cameron (1967-8) it seems that this limit is about 0.3 m s~ (12in s~). This seems reasonable,
since it would require a sliding speed of the order of 0.01 ms~! to give a measurable friction,
and in the analysis there is an implicit assumption that the sliding speed is small compared with
the rolling speed.
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F1cure 6. Variation of apparent viscosity with rolling speed for Barlow—Lamb viscoelastic liquid.
The dashed lines show hypothetical extrapolation to zero rolling speed.
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Ficure 7. Variation of apparent viscosity with rolling speed for Maxwell viscoelastic liquid.
The dashed lines again show the hypothetical extrapolation to zero rolling speed.
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16 A. DYSON

In figure 6 the experimental lower limit to the rolling speed has been arbitrarily set at 0.2 ms=*
(8 in s71). For low values of the true viscosity, 7,, €.g. 1 kNsm~2 (10¢P), extrapolation of the ex-
perimental results to zero rolling speed presents no difficulties but such an extrapolation is
much more difficult at high viscosities, e.g. 1 GNsm~2 (101° P). The dotted lines show a plausible
extrapolation to zero rolling speed of hypothetical sets of experimental readings, limited to a
lowest rolling speed of 0.2 ms—1. Figure 7 shows the result of similar calculations for a Maxwell
model, for which the change in behaviour as the viscosity is increased is more abrupt than for the
Barlow-Lamb model.

107

Maxwell /
Aarlow & Lamb

v

apparent viscosity, 7a/Nsm~—2
(extrapolated to zero rolling speed)
S
[=21

108 10°

true viscosity, 7,/Ns m—2
(at zero rolling speed)

S
@

Ficure 8. Results of extrapolation to zero rolling speed of apparent viscosities of Barlow-Lamb
and of Maxwell viscoelastic liquids.

The results of these extrapolations are shown in figure 8, in which the extrapolated viscosities
are plotted against the true viscosities. There is a change in the slope of the curve at a viscosity of
about 30kN sm~2 (3 x 10°P) for the Barlow—Lamb model, but the change does not occur until
about 300kN s m~2 (3 x 109 P) for the Maxwell model.

The horizontal scale of figure 8 is logarithmic in the true viscosity, and it will therefore be
approximately linear in pressure for a liquid obeying the usual viscosity—pressure law. Figure 8

T
10° 0,=303 K—pe ™

343

S
o

(at U
N
T~

apparent viscosity, /N s m=2
=0)
8
N

m.ly/
0 100 200 300 10%lbfin-2

; i é GNm—2

pressure, p

Ficure 9. The variation of apparent viscosity with pressure and temperature (from Johnson & Cameron
1967-8): 0, A, from static viscosity measurements; @, a, from disk machine measurements.
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ELASTOHYDRODYNAMIC LUBRICATION 17

may therefore be compared with figure 17 of Johnson & Cameron (1967-8), which is reproduced
as figure 9 of this paper. This shows the variation with pressure of the apparent viscosity in a disk
machine, extrapolated to zero rolling speed.

Some curvature of the lines in figure 9 would be expected, even if the extrapolation to zero
rolling speed always gave the true viscosity, 7,. There seems to be a break in the curves at a vis-
cosity of about 10 kN s m~2 (105 P) and this agrees better with the curve in figure 8 for the Barlow—
Lamb liquid than that for the Maxwell liquid. The Maxwell liquid also gives a more abrupt
change in slope.

To obtain a break in slope at a viscosity of 30kNsm=2 (3 x 105 P) for a Maxwell liquid, the
shear modulus G, would have to be reduced to 0.1 GN m~2 (10? dyn cm~2), which is rather low
compared with experimental results obtained in oscillatory shear at high pressures.

Since extrapolation of the experimental results to zero rolling speed is so hazardous, the
variations of viscosity with rolling speed may be compared by expressing the apparent viscosity
as a fraction of its value at some standard rolling speed, e.g. the assumed lower limit of 0.2 m s™2.
The variation with rolling speed of this ratio is shown in figure 10 for a Barlow-Lamb liquid
and in figure 11 for a Maxwellian liquid. Also shown in figures 10 and 11 are the experimental
points read from figure 15 of the paper by Johnson & Cameron (1967-8), which is stated to

Ig (17o/N's m~?)

109, 3
—

- S
T A\ N s = 4
BN gde V
N \ N,
o Ty
I O [ e
= \
;; 1 \\
£ 10 s e
Gl . \
& B

) — 78

2 4 9

mean rolling speed, U/ms?

Ficure 10. Variation of relative apparent viscosity with rolling speed for a Barlow-Lamb liquid.
The dashed line (J & C) gives the experimental results of Johnson & Cameron (1967-8).

Ig (70/Nsm~?)

0
10 =0
‘\ \‘u g 4
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2Ny
I AN 5
ISy \
‘(-é _1 \
& 10 -
= —
= B
~=] ¢
4 .l 7,89
0 2 4

mean rolling speed, U/ms~1

F1cure 11. Variation of relative apparent viscosity with rolling speed for a Maxwell liquid.
The dashed line (J & C) gives the results of Johnson & Cameron again.

3 Vol, 266, A,
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18 A. DYSON

be valid for all contact pressures investigated, and therefore presumably valid over a wide
range of viscosities. Neither figure 10 nor figure 11 shows good agreement between theory and
experiment. The Barlow-Lamb liquid (figure 10) shows a reasonable agreement at a viscosity
of about 10 kN s m~2(105 P), which is of the right order of magnitude, and agreement is obtained
over a rather wider range of viscosities than for the Maxwell liquid (figure 11).

One possible reason for the discrepancy between theory and experiment is the assumption
of a single-step function to represent the true transition between the inlet and Hertzian regions
offigure 1. The situation is so complicated that it is difficult to deal with it in a more exact manner.
Another possible reason for the discrepancy is a change in the pressure distribution as the rolling
speed changes. Dowson et al. (1962) have shown that, as the rolling speed increases, the elasto-
hydrodynamic pressure distribution becomes more sharply peaked. The change will be very
slight over the experimental range of rolling speeds, but the viscosity is very sensitive to pressure
at high pressures. Thus, the true effective mean viscosity, 7,, will increase with increasing rolling
speed, whereas it was assumed to be constant in the analysis.

A third possible reason for the discrepancy is the deviation of the assumed film thicknesses
from the theoretical values for thick films. Johnson & Cameron (1967-8) quote Dyson, Naylor
& Wilson (1965-6) to the effect that the theoretical expression of Dowson & Higginson (1961)
for the film thickness can be used up to 2.5 um (100 pin). But figure 10.6 of the paper quoted shows
that the theoretical expression is accurate only up to about 1.25 um (50 nin) for an h.v.i. mineral
oil and that at a theoretical film thickness of 2.5 um (100 uin) the experimental thickness in pure
rolling is approximately 1.7 um. An error in the calculated film thickness would cause the same
proportional error in the apparent viscosity.

Relation between frictional traction and slide[roll ratio

The relation between the mean frictional shear stress, 7, and the sliding speed for a viscoelastic
lubricant is given by

7 = 1,DE(&y), (13)
where
U, -U, Gt 206G
D = 1 2’ — o “1 — _‘30,
hy & Mo 70U

and £(§,) is given by equation (6) for a Maxwell liquid and by equation (12) for a Barlow-
Lamb liquid.

It has been shown experimentally (Dyson ¢t al. 1965-6) that the minimum thickness, #,, of
film of lubricant is given to a good approximation by the theoretical expression of Dowson &
Higginson (1961) over a wide range of experimental conditions. At constant load and tempera-
ture, the relation between film thickness and rolling speed is

ho = Cl(ﬁ) 07,

where C; is a constant containing viscosity and other fluid properties besides geometrical and

elastic constants. Equation (13) may therefore be put in the form
= U,—-U,E(&,)
= C —‘—1_.—2 Z0a )
TTeTT o

where
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ELASTOHYDRODYNAMIC LUBRICATION 19

For a given temperature and pressure, C, will be constant. Since the mean shear stress is
proportional to the frictional traction, the coefficient of friction will give a straight line passing
through the origin when it is plotted against the slide-roll ratio, (U —U,)/U. This straight line
will be the same for all rolling speeds if the expression £(¢;)/{® is approximately constant for
varying &,, i.e. for varying rolling speeds. Figure 12 shows that this is true for a Barlow-Lamb
liquid over a wider range of ¢; than for a Maxwell liquid.

Figure 14 of Johnson & Cameron (1967-8), reproduced here as figure 13 of this paper, shows
that the initial slope of the line of the traction coefficient against the slide/roll ratio is, in fact,
independent of rolling speed. The theory for the Barlow—Lamb liquid is therefore more nearly
consistent with experiment than is that for the Maxwell liquid.

109
Maxwell
) /\\\
MM\

é\ﬂ 102 /
3 /
fieed /

1074

1072 10" 102

&
Ficure 12. Variation of £(§,)/{8® with ¢, for a Barlow-Lamb liquid and for a Maxwell liquid.
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Ficure 13. Variation of traction coefficient with slide/roll ratio in the isothermal region
(from Johnson & Cameron (1967-8)). Symbols denote different rolling speeds.
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20 A. DYSON

THE NONLINEAR (ASCENDING) REGION OF THE TRAGTION-SLIDING SPEED GURVE
Relation between behaviour of viscoelastic liquids in oscillatory and in continuous shear

While the flow properties of a Newtonian fluid are defined by a single property, the viscosity
7o, those of a viscoelastic fluid require at least one other quantity, e.g. a characteristic time, A.
In the linear region of the traction-sliding speed curve, which has just been discussed, the shear
rate, D, is small compared with A1, and the treatment of the rheological properties is relatively
simple. In particular, there is a necessary and close connexion between the properties of such a
substance in oscillatory and in continuous shear, and this has been used to explain the variations
of apparent viscosity with the residence time in the shear field.

In the nonlinear region the shear rate, D, is no longer small compared with A~1, and this intro-
duces difficulties in the definition of the time derivatives in constitutive equations such as equation
(5). These difficulties were pointed out by Fromm (1948) who gave the result for the equilibrium
shear stress in a Maxwell viscoelastic fluid:

o G Ay
where Ay = DAy = 9 D[G 1. MTIHAY

This expression is formally identical with that in table 1 for the imaginary component G” of

(14)

the complex modulus in oscillatory shear, and this result may be generalized to give a general
relation between the behaviour of a viscoelastic liquid in oscillatory and in continuous shear

where w = D. 7(D) = G" (), (15)

The simplicity of this conclusion is attractive, but it is well known that there are three major
objections to it:

(i) As the viscosity, #,, or the shear rate, D, is increased, equations (14) or (15) in general
predict that the shear stress rises to a maximum and then decreases. Such behaviour seems im-
probable on intuitive grounds, and it has been suggested that it may give rise to an instability of
of the flow pattern (Fromm 1948; Smith 1960).

(ii) The normal stress distribution given theoretically by a Maxwell material is inconsistent
with that given experimentally by real viscoelastic liquids.

(iii) The shear stress becomes comparable with the shear modulus, G, over a wide range of
shear rates, and in these circumstances the classical small-strain elasticity theory, which was used
in the derivation of equation (14), is invalid.

It is possible that objection (i) may be partly cancelled by objection (iii), as the deviation from
classical elasticity theory will be most marked near the maximum in the shear stress. Objection
(ii) remains, and it must be concluded that there are factors which intervene in continuous
shear at high shear stress, but which do not influence the behaviour in oscillatory shear at small
amplitudes. Any necessary connexion between the behaviour in oscillatory and in continuous
shear is thenlost, but there are special cases in which the connexion may be preserved in a modified
form. One modification which is sometimes quoted to equation (15) takes the form

7(D) = K71G¢" (w), (16)
where v = KD and K is an arbitrary shift constant.

In a previous paper (Dyson 1965), the author derived conditions under which equation (16)
was valid, using the general constitutive equation for a viscoelastic model liquid proposed by
Oldroyd (1958). The conditions given were sufficient but not necessary, and it is possible to
derive less restrictive conditions,
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ELASTOHYDRODYNAMIC LUBRICATION 21

Analysis of results of Smith (1960)

In the paper previously quoted, the author compared the results of Smith (1960, 1962) and
of Crook (1963) in continuous shear of mineral oils in disk machines with those of Barlow & Lamb
(1959) in oscillatory shear. Although the oils used in the two classes of experiment were different,
it was nevertheless found possible to relate the two sets of results. An example is shown in figure 14,

1S
x©

(G” or K1) /[N m~—2

107 108 10° 10
(1@ or 7o KD)/Nm~2
Ficure 14. Comparison of results of Barlow & Lamb (1959) G” against 7,0, in oscillatory shear (..., Lv.i.
mineral oil; ———, m.v.i. mineral oil; ——, h.v.i. mineral oil) with those of Crook (1963), KT against 5, KD, in

continuous shear (4, from figure 224 in Crook (1963); x , O, O, from figure 225; V7, from figure 22¢; >, from
figure 25).

reproduced from Dyson (1965), where a value of K has been assigned arbitrarily to each combina-
tion of experimental conditions, i.e. load, rolling speed, disk temperature. A rather unsatisfac-
tory feature of the treatment was that it was necessary to allow K to vary in an arbitrary manner;
it increased with increasing temperature and decreased with increasing pressure. It was also
assumed, on the basis of the information then available (Barlow & Lamb 1959) that the shear
modulus was independent of pressure and temperature. It now appears that the modulus de-
creases with increasing temperature (Barlow ef al. 1967) and increases with increasing pressure
(Pursley 1968; Slie & Madigorsky 1968). Qualitatively, this has the same effect as the variation
in K which was found necessary to fit the traction results. For the behaviour in oscillatory shear
may be described by a relation of the form
G"(0)[Geo = F(17,0/G)
and this, in conjunction with equation (16), gives
T = (Go/K)F(n,KD|G). (17)

The quantities K and G, appear in equation (17) only as the ratio G,/K, and the effects of
variations in K are indistinguishable from those of variations in G.,. Thus, there is the possibility
that K may be approximately constant, of the order of unity, as is found experimentally for other
viscoelastic liquids.

To test this possibility, it is necessary to consider what is known about the variation of G,
with temperature and pressure.

Barlow, Lamb et al. (1967) found that there was a linear relation between the temperature and
the reciprocal of the shear modulus:

1 1

6; G0+C<T—-T0).
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22 A. DYSON

Hutton (1968) found that for an h.v.i. mineral oil at atmospheric pressure

Gi = 2,52+ 0.0240,

where G, is expressed in units of GN m~2 (10 dyn cm~2) and 6 in deg C. This relation covers the
temperature range from 200 to 300 K (—70 to +30°C) and to use it up to temperatures up to
420K (150 °C), asitis proposed to do, introduces a gross extrapolation. Nevertheless, it is the only
source of information available.

The variation with pressure is even less well explored. It is found that G, increases approxi-
mately linearly with pressure at high pressures (Pursely 1968; Slie & Madigorsky 1968); the
behaviour at low pressures is difficult to investigate. The experimental results for the slope of the
linear relation are given in table 2.

TABLE 2. VARIATION OF G,, WITH PRESSURE

temperature 5192
liquid T/K dp reference
di(2-ethylhexyl)phthalate 303 2.6 Pursley 1968
bis-(m-(m-phenoxy)phenoxy)phenyl ether 303 3.3 Pursley 1968
glycerol 257 3.3 Slie & Madi-

gorsky 1968
It will be assumed that the variables of pressiire and temperature may be separated, i.e. that

G (p,0) = G(p) Go(0) + constant.

Then from Hutton’s result
Gy(0) 3
G,(20) ~ 2.5240.0246°

Since the shear stress depends on G /K it seems reasonable to seek a relation between G, /K
and the quantity B

3p

2.52 + 0.0240°

where p is the mean Hertzian pressure. In figure 15, such a relation is shown for the results of
Smith (1960), the values of K being taken from tables 3 and 5 of Dyson (1965), in which it was
assumed that G, remained constant, but that K varied. It has been seen that this is indistinguish-
able from the case in which G, varies but K remains constant, and the constant values to be

10
/ X
x 303K (30°C)
M) v
SlE - x O 373K (100°C)
|z <
= » VvV 463K (190°C)
X
0 20 40
3% 1055 v
2.52‘@.0240/ Nm=K

Ficure 15. Correlation for G, /K from the results of Smith (1960).
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ELASTOHYDRODYNAMIC LUBRICATION 23

assumed for G, must now be discussed. Barlow & Lamb (1959) gave figures of from 0.7 to 0.8 GN
m~2 (7 to 8 x 10°dyn cm~2), but these were obtained at temperatures of less than 240 K ( —30°C).
From figure 8 of Barlow & Lamb (1959), the range of (af)7 of interest is from 108 to 10'°, and
from figures 4 to 6 of Barlow & Lamb (1959) the temperatures under these conditions were in the
neighbourhood of 273K (0°C). It therefore seems better to take Hutton’s value of approxi-
mately 0.4 GNm~2(4 x 10°dyn cm—2) at 273 K (0°C), than the original estimates of 0.7 to 0.8 GN
m~2 (7 to 8 x 10°dyn cm~—2).

Although there is considerable scatter in figure 15, it seems reasonable to conclude that the
results of the analysis are consistent with the assumed variation of modulus with temperature,
while the variation with pressure will give a slope of 3 at 293 K (20°C) if K = 7.5, since the slope
of the line drawn in figure 15 is about 0.4. This value for K of 7.5 is now more nearly consistent
with experimental results for materials which show viscoelastic behaviour under rather more
convenient experimental conditions. Thus a value of K = 2.0 has been found for polydimethyl-
siloxanes (silicone fluids) at atmospheric pressure (Dyson & Wilson 1965-6).

It is therefore possible to conclude that the variation with temperature and pressure of the
apparent values of K reported by Dyson (1965) on the assumption that G, was constant, could in
fact have been due to variations in G, the value of K being approximately constant at 7.5. It
follows that the extrapolation to give K = 103 at atmospheric pressure, and the interpretation
of the results in terms of the variation of the Oldroyd parameter z, = 5, K?, which were suggested
by Dyson (1965), are incorrect.

Analysus of results of Plint

In the preceding section, the results of Smith (1960) were analysed in terms of the numerical
experimental results obtained from the oscillatory shear of mineral oils. In the present section,
the results of Plint (1967-8) will be treated in terms of the analytical model of the Barlow-Lamb
liquid.

0.6

0.4 /

Maxwell

8
]
Q Barlow & Lamb
0.2 ~
) \
1072 10° 102
79 KD|G,

Ficure 16. Prediction of shear stress for viscoelastic liquids.

Equation (17) suggests that the curve of (K7/G,,) against (,KD/G ) should be identical with
that of (G"/G,,) against (7,0/G), and these curves are shown in figure 16 for a Barlow-Lamb
and for a Maxwell liquid. The ascending parts of both curves show quite large regions over
which the shear stress varies approximately linearly with log,y(7,KD/G.,), and it is tempting to

1 Inthenotation of Barlow & Lamb (1959), f is the frequency (Hz) and o is a shift factor, equal to the ratio of the
viscosity at low rates of shear at the test temperature to the value at the reference temperature of 303 K (30°C).
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24 A. DYSON

relate this observation to Plint’s finding that the coefficient of friction varies linearly with the
logarithm of the sliding speed in this region. This suggested relation may be tested quantitatively
by a comparison of the ratios of the slope of the linear portion to the maximum ordinate of the

curve. Thus the value of d(7/7 o)

dln (3,D/Go)
is 0.28 for the Barlow—Lamb liquid and 0.50 for the Maxwell liquid. The results of Plint (1967)
for A(/]fmar)

din (U, — 0j)

range from 0.27 to 0.38 with one exception, and the mean value is 0.35. Here fis the coefficient
of friction. '

Thus even the simplest version of the viscoelastic analogy gives a slope of the linear portion for
a Barlow-Lamb liquid which is within 25 %, of the experimental value and this agreement is
considered quite reasonable in view of the doubtful status of the analogy. The error is rather
larger for the Maxwell liquid, and the linear portion of the curve is less extensive than for the
Barlow-Lamb liquid.

A number of additional points could be considered in the treatment, e.g.

(a) Non-steady shear: the simple analogy between continuous and oscillatory shear holds only
in the steady state.

(b) The distribution of pressures.

(¢) Non-linear elasticity.

(d) Variations in temperature, both within the oil film and along the bounding surfaces.

(¢) The normal stress differences.

It is thought that it is not worth while to introduce these refinements at present, because of the
lack of quantitative knowledge of the effects and of the approximate nature of the viscoelastic
analogy itself.

The discussion in this section has been concerned only with the general shape of the traction-
sliding speed curves. An evaluation of the agreement in absolute values depends on a comparison
of estimates of the modulus from the two fields of experiment—elastohydrodynamic lubrication
and oscillatory shear. This will be discussed in the following section.

THE THERMAL (DESCENDING) REGION OF THE TRAGTION-SLIDING
SPEED CURVE

General

Suppose that the sliding speed in a disk machine is gradually increased from zero, other
quantities such as the mean rolling speed, the load, and the bulk disk temperatures being main-
tained constant. In the linear region the rises in temperature developed within the lubricant
film are very small and do not affect the frictional fraction, and this statement is true at the
beginning of the nonlinear region. The shear rate is uniform throughout the film, and the relation
between shear stress and shear rate is approximately as given by the rising branches of the curves
of figure 16.

The curves of figure 16 predict that the shear stress will rise to a maximum and then decrease
with increasing sliding speed, even in the absence of thermal effects. It has been argued previously
that such behaviour is unlikely on intuitive grounds, and could lead to instability of the flow.
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ELASTOHYDRODYNAMIGC LUBRICATION 25

However, suppose the curves of figure 16 flattened out and continued at a constant level for shear
rates greater than that corresponding to the maximum in the curves, as illustrated in figure 17.
The flow pattern then shows a fairly sudden transition as a result of the decrease in shear modulus
with temperature.

assumed form of shear stress curve

viscoelastic analogy

relative shear stress
(7/Gx) ~

relative shear rate (7,D/G,) -

Ficure 17. Hypothetical form of shear stress/shear rate curve for viscoelastic liquid.

The curves of figure 16 suggest that a sheared viscoelastic liquid is unable to sustain a shear
stress greater than a certain fraction of its limiting shear modulus, G, €.g. the G” analogy gives
this fraction as one quarter for a Barlow-Lamb liquid. According to heat flow theory (Archard
1958/9) the highest temperature tends to occur in the centre of the film, and the shear
modulus will therefore be least at this point. Because of the shape of the curve of figure 17, the
shear rate will also be highest in this position, more heat will be generated there, and the tem-
perature will rise still further, The situation is therefore thermally unstable. There will be a fairly
sharp transition from a uniform shear field, in which the shear stress or the friction increases with
increasing shear rate or sliding speed, to a situation in which most of the shear takes place in a
plane near the centre of the film, and the shear stress is controlled by the shear modulus at
this position. The shear stress will therefore decrease with increasing sliding speed, since the
temperature increases and the shear modulus decreases. It is suggested that the ‘shear failure’
of Plint (1967-8) should be interpreted in terms of the mechanism just described.

Analysis of results of Johnson & Cameron

The preceding argument may be tested against the experimental results of Johnson & Cameron
(1967-8). These authors found that the estimated temperature @, in the median plane of the
lubricant film was a very important factor in the determination of the frictional traction in the
thermal region, and this is qualitatively consistent with the argument just given. It will now be
tested quantitatively.

Suppose, as before, that the variables of pressure and temperature may be separated in their
effects on the shear modulus, i.e.

G (p,0) = G,(p) G5(0) + constant.
Furthermore, suppose G,(0) to be given by Hutton’s result for an h.v.i. mineral oil:

Gy(0) 3
G,(20) ~ 2.52+0.0240°

Also suppose that G, (p) is given by the empirical relation shown in figure 15, which was derived
from an analysis of Smith’s results in the nonlinear region, given in Dyson (1965). Then the

4 Vol, 266. A.
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26 A. DYSON

maximum shear stress for a Barlow-Lamb liquid according to the simplest form of the visco-

elastic analogy is 7
gy G o1 [ 3p

Tmax = 3 = % 559 10,0240,

according to the linear relation suggested in figure 15, since Gp,y = G, for a Barlow-Lamb
liquid, and the slope of the line in figure 15 is approximately 0.4. In equation (18), 7,5 and p are
expressed in N m—2,

Figure 18 shows a test of equation (18) against the experimental results of Johnson & Cameron

—2x 108] (18)

(1967-8) as given in figure 20 of their paper. The close agreement is probably largely fortuitous,
particularly in view of the fact that different oils were used in the two different investigations.
Nevertheless, the agreement indicates that there is probably no gross discontinuity between the
nonlinear ascending region of the friction-sliding speed curve and the thermal descending region.
It is therefore reasonable to assume that the two regions are governed by the same material
properties, and that there is a continuous transition from one region to the other, rather than the
discontinuous ‘failure’ suggested by Plint (1967-8).

15

5 —100
Kki&\sg(\ ~90
T Y 80 .
& 0 % o T 470 TE curve a, 5 = 1.31 GN'm~2 (191 0001bf in—2)
= P 2 curve b, 5= 0.96 (139000)
T oq 7?’@ - 10 S curvec, 5= 0.60 (87000)
s © o | w
~ 7 gt 450
@ ) o 8
£ 9° )\j‘}Qz b &
g V\?\c %O o -40 §
,g 5 A 'z,
g v, o §
g :
-125
3
30 " 40 50 60 70 80 90100 150 200

0,/°C (estimated)

Fi1cure 18. Variation of mean shear stress with temperature and pressure. x, O, V, experimental points from
Johnson & Cameron (1967-8); ——, theory based on empirical relation shown in figure 15.

Variation of friction with disk surface temperature

Smith (1960, 1962), Johnson & Cameron (1967-8) and Plint (1967-8) found that the frictional
traction decreased with increasing temperature of the surfaces of the disks, whereas other workers
had reported an effect in the opposite sense (Genkin, Kuz’min & Misharin 1959; Benedict &
Kelley 1961, O’Donoghue & Cameron 1966).

It is suggested that the explanation for this discrepancy lies in the fact that the frictional
traction goes through a rather flat maximum as the disk surface temperature increases. Such
maxima have been observed experimentally in the disk machine at Thornton Research Centre.
A theoretical treatment on the basis discussed above is given in appendix C, where it is shown that
the temperature corresponding to the maximum friction would be expected to increase with
increasing Hertzian pressure, increasing rolling and sliding speed and increasing radius of relative
curvature.
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ELASTOHYDRODYNAMIC LUBRICATION 27

Discussion
Interpretation of friction results in terms of the properties of a Barlow—Lamb liquid

The relation between frictional traction and sliding speed in a disk machine has been divided
into three regions, the linear region, the nonlinear (ascending) region and the thermal (descend-
ing) region. The experimental features of each of these regions have been analysed on the
basis of the known or assumed viscoelastic properties of the lubricant.

In the linear region, the slope of the relation between friction and sliding speed may be deter-
mined in principle without ambiguity from the viscoelastic properties of the lubricant as deter-
mined in oscillatory shear at small amplitudes. In practice, many of the data are uncertain and
various approximations have to be used, but the weight of the evidence clearly favours the Barlow
Lamb model of a viscoelastic liquid rather than the more usual Maxwell model.

In the nonlinear (ascending) region, the relation between the friction and the viscoelastic
properties, as determined in oscillatory shear, is much less clear. However, the tentative correla-
tion which is proposed seems to be consistent with the experimental information available from
both fields.

In the thermal (descending) region the relation between friction and the viscoelastic properties
as determined in oscillatory shear is again rather closer, but in this case it is necessary to postulate
an arbitrary shift constant, K. A certain empirical linear relation between G/K and a simple
function of temperature and pressure, shown in figure 15, gives predictions of the friction both in
the ascending and descending regions of the curve. A value of K of 7.5 is consistent both with the
experimental information on the variation of shear modulus with pressure, and with the behaviour
of other viscoelastic liquids, e.g. silicones, in oscillatory and in continuous shear.

Continuity or discontinuity?

Arguments have been advanced for a continuity between the ascending and descending
regions of the curve of traction against sliding speed, and against the discontinuity suggested by
Plint (1967-8). A further argument against Plint’s concept of a shear failure, which he likens to
that occurring in a plastic solid, is the short duration of exposure of the lubricant to the stress
situation, 10 to 100 us. Furthermore, the high normal pressures make it impossible for any of the
principal stresses in the lubricant to be tensile under physically reasonable circumstances, even
when allowance is made for the normal stress differences which occur as a result of the shearing
of a viscoelastic liquid. It is difficult to see how failure in the terms described by Plint can occur
unless one of the principal stresses is tensile.

Some unexplained features of Plint’s results

Plint (1967-8) found that the coefficient of friction in the thermal region decreased with in-
creasing dimensions of the conjunction region; his rollers were crowned to give a circular contact
zone. It is difficult to explain this relation on the basis of the ideas advanced here, except perhaps
on the grounds that the development of the high temperatures in the median plane of the oil
film will take a certain time. A small central zone would mean that a small proportion of the area
of the median plane of the oil film within the conjunction would be at or near the equilibrium
temperature. However, Archard (1958/9) has shown that 95 %, of the equilibrium temperature

difference is obtained in a time
0.3h3Xos

4-2
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28 A. DYSON

where Y, is the thermal diffusivity of the lubricant, about 0.1 mm?s~! for mineral oils. For an
oil film thickness of 1 um, the time required would be approximately 3 us, and the corresponding
distance would be 3 um at a rolling speed of 1 m s—1. This is small compared with the dimensions
of a conjunction area, and the conclusion seems to be that this mechanism could not account for
the observed facts. It is possible that a larger time is required to reach the non-uniform velocity
distribution required for equilibrium in the thermal region, but it is difficult to see how a quantita-
tive estimate of this time may be made. ’

Plint (1967-8) gives a relation between shear stress and temperature, qualitatively similar to,
but quantitatively different from, that of Johnson & Cameron (1967-8) reproduced in figure
18. However, Plint’s oil had an unusually low viscosity index, and may therefore be expected to
differ markedly in composition and in properties from that of Johnson & Cameron. This latter
oil had a high viscosity index and was of a type similar to that used by Smith (1960, 1962) and
on which the analysis of figure 15 was based. Smith’s oil had a rather lower viscosity than that
of the one used by Johnson & Cameron, but it would be expected to be otherwise similar in
composition and in properties.

Suggestions for future work

Experimental work on the frictional traction in elastohydrodynamic lubrication is in progress
in many laboratories in different countries, but there are few laboratories with facilities for the
investigation of the properties of liquids in oscillatory shear, and even fewer in which this can be
done under pressure.

The analysis and interpretation of the results would be simpler if disk machine experiments
could be conducted with fluids known to behave according to the simple Barlow-Lamb model,
e.g. di(2-ethylhexyl)phthalate. Friction-sliding speed curves could be taken, covering all three
regions, as a function of rolling speed, disk surface temperature, load, radius of relative curvature,
and the elastic properties of the disks. In principle, if the liquid conforms strictly to the model, the
necessary information on the viscoelastic properties of the lubricant in oscillatory shear could be
obtained by a measurement of the viscosity and of the real part of the shear mechanical impedance
at one frequency, as a function of temperature and of pressure. The accuracy may be insufficient
in certain conditions, and it would be useful to have readings over a wide frequency range, both
to confirm the validity of the model and to provide a more accurate estimate of the limiting shear
modulus at high frequencies.

CONCLUSION

The main features of the experimental relation between frictional traction and sliding speed in
elastohydrodynamic lubrication have been interpreted in terms of the Barlow—-Lamb model of a
viscoelastic liquid.

Some features remain unexplained, and there is a need for more information, particularly on
the variation with pressure and temperature of the limiting shear modulus, G, in oscillatoryshear.

Nevertheless, the results are sufficiently encouraging to suggest that the friction-sliding speed
curve represents a continuous relation, controlled by the same viscoelastic properties throughout
the whole experimental region.

The author wishes to thank Mr A. Prothero and Mrs A, C. Rowlands for the numerical
tabulation of equation (12). He is also indebted to the Council of the Institution of Mechanical
Engineers and to Dr K. L. Johnson and Dr R. Cameron for permission to reproduce figures 3,
4, 9, 13 and part of figure 18 of this paper from the Proceedings of the Institution, 1967-8.
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APPENDIX A. FRICTIONAL TRACTION FOR A NEWTONIAN LUBRICANT

Consider the frictional traction in a conjunction such as A, B, A, B, in figure 1. The boundaries
of the film are assumed to be plane and parallel, and all the heat generated by shear is assumed to
be removed by conduction through the oil film in a direction perpendicular to the walls. Archard
(1958/9) and Crook (1961) have shown that this assumption is adequate under most practical
conditions of elastohydrodynamic lubrication. The pressure in the conjunction is assumed to be
uniform, and the temperature, Oy, of the plane bounding surfaces is also assumed to be constant.

The viscosity, 7, of the lubricant is assumed to vary exponentially with temperature:

7 = wexp[—f(0—0w)],

where 7y is the viscosity at the temperature 6y. Crook has shown that under these conditions
the shear stress, 7, is given by

r = Tw(U—0p) In[(1+9)t+ 4]
ko [a+y))E 2
where ¥ = 3w (U, — Us,)?/8k, and £, is the thermal conductivity of the oil. The variation of shear
stress with sliding speed is of interest, and the expression for the shear stress can be put in the form

3
T=hi()(8’f;),”w) (1+9)Hn[(1+ )+ 94,

The function containing ¥ has a maximum value of approximately 0.66 when § = 2.3, and
the maximum shear stress is
] %
Tmax = i(Sk"”“’) 0.66.

max }lo ﬂ

If yw = 9o exp (ap), then the maximum coefficient of friction is given by

o Tmax 0.66c (8/:0770)% exp (3ap)
"Ep ke \ B ap

If ap > 1, this expression increases rapidly with pressure. A qualitatively similar result is ob-

tained if a Hertzian pressure distribution and a more realistic viscosity—temperature—pressure
relation is assumed, and if allowance is made for the variation in surface temperature arising
from heat flow to the surfaces.

ArPENDIX B. BEHAVIOUR OF A BARLOW-LAMB LIQUID IN
CONTINUOUS SHEAR AT LOW SHEAR RATES

The expression for the compliance of a Barlow-Lamb liquid in oscillatory shear is

TH0) G = 1+ (22) i Oo . (262)1),

No @ Wy \N®

Since ;
(2i)} = £ (1-9),

the expression for the shear modulus may be put in the form
G*(s) = 1]J*(s) = Go[1+ (As) 2],

where s = iw and A = 9,/G . Equation (11) of the text then gives the non-dimensional mean
shear stress in the situation considered:

e 1
Son =5 L 1{s2[1+<As>%]2}' (B1)
4-3
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30 A. DYSON

The inverse transform in equation (B1) is not found in the standard tables, and the nearest
related result is '

L {1'+ (1/\&)%} (ﬂ/\lv)% Fxp (v/A) erfc (v/A)3, (B2)
where erfc x = %fw exp (—x?%) dx.
d 1 AR
Now ds [1—‘+ (Asﬁ] = skl ()

and this, together with the standard result,

1 {d_d&f(s)} = —vL7Y{ f(5)},

leads to the conclusion that

1 2(w\* 2v v v\¥
1) \_2Y hd
it e =) =3 e (1) ere () (B3)
Now let 1;_é+B+C+Q+‘_E—_+,f.~F__
(1+x)2 " x  x2 i3 IL+x x(1+4x)2

where x will later be identified with (As)%. The solution is
A=-3; B=+3; C=-2; D=1; E=3; F=-—

and equation (B1) now gives

. A3GOOL_1{ 3 .3 2 1 3 1 }

b = s LT O T Ot T e T T (T GWET - ()

The following results are obtained from standard tables of the Laplace transform:
L4 = (m)4,
L{s™1} = H(v)
L5 = 2(0jm),
L1572} =,
where H (v) is the Heaviside unit step function, which may be put equal to unity for v > 0. The

remaining two transforms have already been given. The variable v is equivalent to ¢, which may

be replaced by the substitution
G=4/A=GCy t1/"70

The final result is given by equation (12) of the text,
Eor = 1= 6(n8) 44343+ (2 - 342Y) exp (&) erfe (41)-

The expansion of this expression when §; < 1is

7 _ §1 % gl
and when §; > 1is

- 4 3
oL = l—z@'l"g’;-l-....
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ELASTOHYDRODYNAMIC LUBRICATION 31

APPENDIX C. RELATION BETWEEN FRICTIONAL TRACTION AND
DISK SURFACE TEMPERATURE

Let 0, be the temperature of the surfaces of the disks entering the conjunction. The mean
temperature 6y of the surfaces of the disks will be greater than 6, because of the ‘flash tempera-
ture’ (Blok 1937). As an approximation, suppose that half the heat generated by friction is
removed by each surface and, for the purposes of calculating the flash temperature, let the velo-
cities of each surface relative to their conjunction be put as U. Then the mean flash temperature
is given by e — F(Uy— Uy) b 3

e 2 [/cmpmcmﬁ] ’
where ¢ is a numerical constant, approximately equal to unity; £, is the thermal conductivity of
the materials of the disks; ¢, is the specific heat of the materials of the disks; p,, is the density of
the materials of the disks.

The mean temperature, 0, in the median plane of the oil film will be higher than the mean

(CG1)

surface temperature, 0y, because nearly all the heat will be generated by shear near the plane and
will then have to be conducted through the oil film to the surfaces (Archard 1958/9)
_ T(Oh=Uy) by

Oc—Ov 4k ’
0

(G2)

where /£, is the thickness of the film of lubricant.

Now suppose that the shear stress is limited to a constant fraction of the shear modulus, G, of
the lubricant, which is related to the local temperature by an equation of the form given by
Barlow, Erginsav & Lamb (1967);

1/t = ay+a,0 (G3)
where 4, and g, are constants. Equations (C1), (G2) and (C3) give
Oc = 0, + E(ay+a,0c)71, (C4)
where h b 3
E=U-0)|2 2 (————=) |. G5
(G- [+ o) (- )] (Cs)

Now the thickness, %, of the lubricant film will be given by the relation of Dowson & Higginson
(1961) _

/tO — 1.6(770 U)O.'? o0-6 (E’)0.03 R0.43 w—0.13, (C 6)
where 7, is the viscosity of the lubricant at atmospheric pressure and at the temperature, 6,, of the
surfaces of the disks as they enter the conjunction; « is the pressure coefficient of viscosity; £’ is
the reduced elastic modulus of the materials of the disks; R is the radius of relative curvature and
w is the load per unit transverse width.

The viscosity, 7,, is related to the temperature, 0,, e.g. by the Vogel equation:

7o = Aexp [B(0;+0,)7]. (C7)
Equations (C4), (C5), (C6) and (G7) may be put in the dimensionless form
Oc = O+ O;YP, + Pyexp[0.7(0, + P,) 1]}, (G8)
where Oc = (a, B)~ (ay+a,0c);

0, = (e B)7* (ay+a,0,);

P, = (2B%a)~ (Uy — Uy) 6b% (kynprcl)

P, = 0.4 (kg B2a;) ™ (Uy — U,) (TA)®7 008( E’)0-08 R0-43 1~0.13;
P; = (a, B)™ (a, 0y — a).
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32 A. DYSON

The variation of & with temperature has been ignored.

The relation between @, and @, given in equation (C8) shows a very flat minimum in @, with
varying @, and this corresponds to a flat maximum in the relation between the frictional traction
and the surface temperature of the disks.

The value of the temperature, 0;, at which the maximum in the friction occurs may be obtained
without difficulty. Differentiation of equation (C4) gives the condition that df¢/df; = 0 when

dE

1
—d—01=a0+a100:; (09)

from equation (C3). Now from equation (C5)
dE _ U,-U,dh,

o, = 4 o, (G10)
and from equations (C6) and (C7)
10, 0= (0,4 00 (G
Equations (C9), (C10) and (C11) then give
1_0G,-U, 0.1Bk,
T 4k,  (0,+0,)%
or _ﬁliﬁﬂo ~ 0.42 [Tko (glk;" Ua)r (C12)
If 7 =100 MN m~2, B =1000K,
hy = 0.5 um, ko= 0.2]s1m 1K,
U—-U,=1ms™ 0, = — 173K for 0, expressed in K

0, = 100°C for 0, expressed in °C,
then equation (G12) gives
6, = 381 K (108°C).

Although the shear stress, 7, in equation (C 12) varies only slowly with temperature, the film
thickness, Ay, varies comparatively rapidly, and the above numerical example is useful only as a
guide. Equations (C6) and (C7) give

by = Hexp(

0.78B )
0,+6,)°

where H = 1.6 (AU)07 06 (£')0-03 R0-4344y-0.13_ Equation (C12) then gives

TH<UI—U2)]%
Bk, |’

zexp(—z™) = 1.2[ (C13)
where z = (0, +6,)/0.35B. _
Equation (G 13) may be solved by graphical or numerical interpolation for 0,, on the assump-

tion that the value of 7 is approximately constant. The results are as stated in the text.
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